import Mathlib.Analysis.InnerProductSpace.PiL2
import Mathlib.LinearAlgebra.AffineSpace.Midpoint
import Mathlib.Geometry.Euclidean.Basic
import Mathlib.Geometry.Euclidean.Triangle
/-!
# Bulgarian Mathematical Olympiad 1998, Problem 2
A convex quadrilateral ABCD has AD = CD and ∠DAB = ∠ABC < 90°.
The line through D and the midpoint of BC intersects line AB
in point E. Prove that ∠BEC = ∠DAC. (Note: The problem is valid
without the assumption ∠ABC < 90°.)
-/
namespace Bulgaria1998P2
open EuclideanGeometry
theorem bulgaria1998_p2
(A B C D E M : EuclideanSpace ℝ (Fin 2))
(H1 : dist D A = dist D C)
(H2 : ∠ D A B = ∠ A B C)
(H3 : M = midpoint ℝ B C) :
∠ B E C = ∠ D A C := sorry
end Bulgaria1998P2
This problem does not yet have a complete formalized solution.