import Mathlib.Tactic
/-!
# Iberoamerican Interuniversity Mathematics Competition 2022, Problem 6
Given a positive integer m, let d(m) be the number of postive
divisors of m. Show that for every positive integer n, one
has
d((n + 1)!) ≤ 2d(n!).
-/
namespace CIIM2022P6
def d : ℕ → ℕ
| m => (Nat.divisors m).card
theorem ciim2022_p6 (n : ℕ) (hn : 0 < n) :
d (Nat.factorial (n + 1)) ≤ 2 * d (Nat.factorial n) := sorry
end CIIM2022P6
This problem does not yet have a complete formalized solution.