import Mathlib.Tactic
/-!
Canadian Mathematical Olympiad 1998, Problem 3
Let n be a natural number such that n ≥ 2. Show that
(1/(n + 1))(1 + 1/3 + ... + 1/(2n - 1)) > (1/n)(1/2 + 1/4 + ... + 1/2n).
-/
namespace Canada1998P3
theorem canada1998_p3 (n : ℕ) (hn : 2 ≤ n) :
(1/(n:ℝ)) * ∑ i ∈ Finset.range n, (1/(2 * (i:ℝ) + 2)) <
(1/((n:ℝ) + 1)) * ∑ i ∈ Finset.range n, (1/(2 * (i:ℝ) + 1)) := sorry
end Canada1998P3
This problem has a complete formalized solution.