import Mathlib.Data.Real.Sqrt
/-!
# International Mathematical Olympiad 1960, Problem 2
For what values of the variable $x$ does the following inequality hold:
\[\dfrac{4x^2}{(1 - \sqrt {2x + 1})^2} < 2x + 9 \ ?\]
-/
open Real Set
namespace Imo1960Q2
/-- The predicate says that `x` satisfies the inequality
\[\dfrac{4x^2}{(1 - \sqrt {2x + 1})^2} < 2x + 9\]
and belongs to the domain of the function on the left-hand side.
-/
@[mk_iff isGood_iff']
structure IsGood (x : ℝ) : Prop where
/-- The number satisfies the inequality. -/
ineq : 4 * x ^ 2 / (1 - sqrt (2 * x + 1)) ^ 2 < 2 * x + 9
/-- The number belongs to the domain of \(\sqrt {2x + 1}\). -/
sqrt_dom : 0 ≤ 2 * x + 1
/-- The number belongs to the domain of the denominator. -/
denom_dom : (1 - sqrt (2 * x + 1)) ^ 2 ≠ 0
/- determine -/ abbrev SolutionSet : Set ℝ := sorry
theorem imo1960_p2 {x} : IsGood x ↔ x ∈ SolutionSet := sorry
end Imo1960Q2
This problem has a complete formalized solution.
The solution was imported from mathlib4/Archive/Imo/Imo1960Q2.lean.