import Mathlib.Tactic
/-!
# International Mathematical Olympiad 1961, Problem 1.
Given constants a and b, solve the system of equations
x + y + z = a
x² + y² + z² = b²
xy = z²
for x,y,z. Give the conditions that a and b must satisfy so that
the solutions x,y,z are distinct positive numbers.
-/
namespace Imo1961P1
abbrev IsSolution (a b x y z : ℝ) : Prop :=
x + y + z = a ∧
x^2 + y^2 + z^2 = b^2 ∧
x * y = z^2
/- determine -/ abbrev xyz_of_ab (a b : ℝ) : Set (ℝ × ℝ × ℝ) := sorry
/- determine -/ abbrev ab_that_make_xyz_positive_distinct : Set (ℝ × ℝ) := sorry
theorem imo1961_p1a (a b x y z : ℝ) :
⟨x,y,z⟩ ∈ xyz_of_ab a b ↔ IsSolution a b x y z := sorry
theorem imo1961_p1b (a b : ℝ) :
⟨a,b⟩ ∈ ab_that_make_xyz_positive_distinct ↔
(∀ x y z, IsSolution a b x y z → 0 < x ∧ 0 < y ∧ 0 < z ∧ [x,y,z].Nodup) := sorry
end Imo1961P1
This problem does not yet have a complete formalized solution.