import Mathlib.Analysis.SpecialFunctions.Trigonometric.Basic
import Mathlib.Tactic
/-!
# International Mathematical Olympiad 1966, Problem 4
Prove that for every natural number n and for every real
number x that is not of the form kπ/2ᵗ for t a non-negative
integer and k any integer,
1 / (sin 2x) + 1 / (sin 4x) + ... + 1 / (sin 2ⁿx) = cot x - cot 2ⁿ x.
-/
namespace Imo1966P4
theorem imo1966_p4 (n : ℕ) (x : ℝ)
(hx : ∀ t : ℕ, ∀ k : ℤ, x ≠ k * Real.pi / 2^t) :
∑ i ∈ Finset.range n, 1 / Real.sin (2^(i + 1) * x) =
1 / Real.tan x - 1 / Real.tan (2^n * x) := sorry
end Imo1966P4
This problem does not yet have a complete formalized solution.