import Mathlib.Tactic
/-!
# International Mathematical Olympiad 1966, Problem 5
Solve the system of equations
|a_1 - a_2| x_2 +|a_1 - a_3| x_3 +|a_1 - a_4| x_4 = 1
|a_2 - a_1| x_1 +|a_2 - a_3| x_3 +|a_2 - a_4| x_4 = 1
|a_3 - a_1| x_1 +|a_3 - a_2| x_2 +|a_3 - a_4| x_4 = 1
|a_4 - a_1| x_1 +|a_4 - a_2| x_2 +|a_4 - a_3| x_3 = 1
where a_1, a_2, a_3, a_4 are four different real numbers.
-/
namespace Imo1966P5
noncomputable abbrev solution_fun : (ℝ×ℝ×ℝ×ℝ) → (ℝ×ℝ×ℝ×ℝ) :=
fun (a0, a1, a2, a3) ↦
let s : List ℝ := [a0, a1, a2, a3]
let ai : ℝ := Option.get (List.min? s) rfl
let al : ℝ := Option.get (List.max? s) rfl
let i : ℕ := s.findIdx (. = ai)
let l : ℕ := s.findIdx (. = al)
let f : ℕ → ℝ := fun n ↦ if n = i ∨ n = l then (1 / (al - ai)) else 0
(f 0, f 1, f 2, f 3)
theorem imo1966_p5
(x a : Fin 4 → ℝ)
(h₀ : Function.Injective a)
(h₁: ∀ i : Fin 4, ∑ j : Fin 4, abs (a i - a j) * x j = 1) :
(x 0, x 1, x 2, x 3) = solution_fun (a 0, a 1, a 2, a 3) := sorry
This problem does not yet have a complete formalized solution.
The solution was imported from IMO-Steps/Lean_v20/imo_proofs/imo_1966_p5.lean.