import Mathlib.Tactic
/-!
# International Mathematical Olympiad 1966, Problem 5
Solve the system of equations
|a_1 - a_2| x_2 +|a_1 - a_3| x_3 +|a_1 - a_4| x_4 = 1
|a_2 - a_1| x_1 +|a_2 - a_3| x_3 +|a_2 - a_4| x_4 = 1
|a_3 - a_1| x_1 +|a_3 - a_2| x_2 +|a_3 - a_4| x_4 = 1
|a_4 - a_1| x_1 +|a_4 - a_2| x_2 +|a_4 - a_3| x_3 = 1
where a_1, a_2, a_3, a_4 are four different real numbers.
-/
namespace Imo1966P5
noncomputable /- determine -/ abbrev solution_set {a : Fin 4 → ℝ}
(ha : Function.Injective a) : Set ((Fin 4 → ℝ)) := sorry
theorem imo1966_p5
(x a : Fin 4 → ℝ)
(ha : Function.Injective a) :
(∀ i : Fin 4, ∑ j : Fin 4, abs (a i - a j) * x j = 1)
↔ x ∈ solution_set ha := sorry
end Imo1966P5
This problem has a complete formalized solution.
The solution was imported from IMO-Steps/Lean_v20/imo_proofs/imo_1966_p5.lean.