import Mathlib.Algebra.Periodic
import Mathlib.Tactic
/-!
# International Mathematical Olympiad 1968, Problem 5
Let f be a real-valued function defined for all real numbers x such that,
for some positive constant a, the equation
f(x + a) = a/2 + √(f(x) - (f(x))²)
holds for all x.
(a) Prove that the function f is periodic.
(b) For a = 1, give an example of a non-constant function with the required properties.
-/
namespace Imo1968P5
abbrev P (a : ℝ) (f : ℝ → ℝ) : Prop :=
0 < a ∧
∀ x, (f x)^2 ≤ f x ∧ f (x + a) = 1/2 + √(f x - (f x)^2)
theorem imo1968_p5a (f : ℝ → ℝ) (a : ℝ) (hf : P a f) :
∃ b, 0 < b ∧ f.Periodic b := sorry
noncomputable /- determine -/ abbrev solution_func : ℝ → ℝ := sorry
theorem imo1968_p5b :
P 1 solution_func ∧ ¬∃c, solution_func = Function.const ℝ c := sorry
end Imo1968P5
This problem has a complete formalized solution.