import Mathlib.Tactic
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Complex
/-!
# International Mathematical Olympiad 1969, Problem 2
Let a₁, a₂, ..., aₙ be real constants, x be a real variable, and
f(x) = cos(a₁ + x) + (1/2)cos(a₂ + x) + (1/4)cos(a₃ + x) + ...
+ (1/2ⁿ⁻¹)cos(aₙ + x).
Given that f(x₁) = f(x₂) = 0 for some x₁, x₂, prove that
x₂ - x₁ = mπ for some integer m.
-/
namespace Imo1969P2
open scoped Real
theorem imo1969_p2
(x₁ x₂ : ℝ)
(n : ℕ)
(a : ℕ → ℝ)
(f : ℝ → ℝ)
(h₁ : ∀ x, f x = ∑ i ∈ Finset.range n, (Real.cos (a i + x)) / (2^i))
(h₂ : f x₂ = 0)
(h₃ : f x₁ = 0)
(h₄: ∑ i ∈ Finset.range n, (Real.cos (a i) / (2 ^ i)) ≠ 0) :
∃ m : ℤ, x₂ - x₁ = m * π := sorry
end Imo1969P2
This problem has a complete formalized solution.
The solution was imported from IMO-Steps/imo_proofs/imo_1969_p2.lean.