import Mathlib.Tactic
/-!
# International Mathematical Olympiad 1972, Problem 4
Find all positive real solutions to:
(x_1^2 - x_3x_5)(x_2^2 - x_3x_5) ≤ 0
(x_2^2 - x_4x_1)(x_3^2 - x_4x_1) ≤ 0
(x_3^2 - x_5x_2)(x_4^2 - x_5x_2) ≤ 0
(x_4^2 - x_1x_3)(x_5^2 - x_1x_3) ≤ 0
(x_5^2 - x_2x_4)(x_1^2 - x_2x_4) ≤ 0
-/
namespace Imo1972P4
/- determine -/ abbrev solution_set : Set (ℝ × ℝ × ℝ × ℝ × ℝ) := sorry
theorem imo1972_p4 (a b c d e : ℝ)
(h₀ : 0 < a ∧ 0 < b ∧ 0 < c ∧ 0 < d ∧ 0 < e):
(a^2 - c * e) * (b^2 - c * e) ≤ 0 ∧
(b^2 - d * a) * (c^2 - d * a) ≤ 0 ∧
(c^2 - e * b) * (d^2 - e * b) ≤ 0 ∧
(d^2 - a * c) * (e^2 - a * c) ≤ 0 ∧
(e^2 - b * d) * (a^2 - b * d) ≤ 0 ↔
(a, b, c, d, e) ∈ solution_set := sorry
end Imo1972P4
This problem does not yet have a complete formalized solution.