Compfiles: Catalog Of Math Problems Formalized In Lean

Imo1977P4


import Mathlib.Tactic

/-!
# International Mathematical Olympiad 1977, Problem 4

Define f(x) = 1 - a cos x - b sin x - A cos 2x - B sin 2x,
where a, b, A, B are real constants.
Suppose that f(x) ≥ 0 for all real x.
Prove that a^2 + b^2 ≤ 2 and A^2 + B^2 ≤ 1.
-/

namespace Imo1977P4

theorem imo1977_p4 (f : ℝ → ℝ) (a b A B : ℝ)
  (h₀ : ∀ x, f x =
             1 - a * Real.cos x - b * Real.sin x - A * Real.cos (2 * x) - B * Real.sin (2 * x))
  (h₁ : ∀ x, f x ≥ 0) :
    a ^ 2 + b ^ 2 ≤ 2 ∧ A ^ 2 + B ^ 2 ≤ 1 := sorry


end Imo1977P4

File author(s): InternLM-MATH LEAN Formalizer v0.1

This problem does not yet have a complete formalized solution.

Open with the in-brower editor at live.lean-lang.org:
External resources: