import Mathlib
import Mathlib.Tactic
/-!
# International Mathematical Olympiad 1978, Problem 5
Let a_k be a sequence of distinct positive integers for k = 1,2,3, ...
Prove that for all natral numbers n, we have:
sum_{k=1}^{n} a(k)/(k^2) >= sum_{k=1}^{n} (1/k).
-/
open Finset
namespace Imo1978P5
theorem imo_1978_p5
(n : ℕ)
(f : ℕ → ℕ)
(h₀ : ∀ (m : ℕ), 0 < m → 0 < f m)
(h₁ : ∀ (p q : ℕ), 0 < p → 0 < q → p ≠ q → f p ≠ f q)
(h₂ : 0 < n) :
(∑ k ∈ Finset.Icc 1 n, (1 : ℝ) / k) ≤ ∑ k ∈ Finset.Icc 1 n, ((f k):ℝ) / k ^ 2 := sorry
This problem has a complete formalized solution.
The solution was imported from IMO-Steps/imo_proofs/imo_1978_p5.lean.