Compfiles: Catalog Of Math Problems Formalized In Lean

Imo1979P5


import Mathlib.Tactic

/-!
# International Mathematical Olympiad 1979, Problem 5

Find all real numbers a for which there exist
non-negative real numbers x1, x2, x3, x4, x5 satisfying:

x1 + 2x_2 + 3x_3 + 4x_4 + 5x_5 = a,
x1 + 2^3x_2 + 3^3x_3 + 4^3x_4 + 5^3x_5 = a^2,
x1 + 2^5x_2 + 3^5x_3 + 4^5x_4 + 5^5x_5 = a^3.
-/

namespace Imo1979P5

/- determine -/ abbrev solution_set : Set ℝ := sorry

theorem imo1979_p5 (a : ℝ) :
  (∃ x1 x2 x3 x4 x5 : ℝ,
    x1 ≥ 0 ∧ x2 ≥ 0 ∧ x3 ≥ 0 ∧ x4 ≥ 0 ∧ x5 ≥ 0 ∧
    x1 + 2*x2 + 3*x3 + 4*x4 + 5*x5 = a ∧
    x1 + 2^3*x2 + 3^3*x3 + 4^3*x4 + 5^3*x5 = a^2 ∧
    x1 + 2^5*x2 + 3^5*x3 + 4^5*x4 + 5^5*x5 = a^3 ) ↔ a ∈ solution_set := sorry


end Imo1979P5

File author(s): InternLM-MATH LEAN Formalizer v0.1

This problem does not yet have a complete formalized solution.

Open with the in-brower editor at live.lean-lang.org:
External resources: