import Mathlib.Data.Int.Lemmas
import Mathlib.Data.Nat.Fib.Basic
import Mathlib.Tactic.Linarith
import Mathlib.Tactic.LinearCombination
open Int Nat Set
namespace Imo1981P3
/-!
# International Mathematical Olympiad 1981, Problem 3
Determine the maximum value of `m ^ 2 + n ^ 2`, where `m` and `n` are integers in
`{1, 2, ..., 1981}` and `(n ^ 2 - m * n - m ^ 2) ^ 2 = 1`.
-/
/-
We generalize the problem to `{1, 2, ..., N}` and then specialize to `N = 1981`.
-/
variable (N : ℕ)
-- N = 1981
@[mk_iff]
structure ProblemPredicate (m n : ℤ) : Prop where
m_range : m ∈ Ioc 0 (N : ℤ)
n_range : n ∈ Ioc 0 (N : ℤ)
eq_one : (n ^ 2 - m * n - m ^ 2) ^ 2 = 1
def specifiedSet : Set ℤ :=
{k : ℤ | ∃ m : ℤ, ∃ n : ℤ, k = m ^ 2 + n ^ 2 ∧ ProblemPredicate N m n}
/- determine -/ abbrev solution : ℕ := sorry
theorem imo1981_p3 : IsGreatest (specifiedSet 1981) solution := sorry
end Imo1981P3
This problem has a complete formalized solution.
The solution was imported from mathlib4/Archive/Imo/Imo1981Q3.lean.