import Mathlib.Tactic
import Mathlib.Analysis.SpecialFunctions.Pow.Real
/-!
# International Mathematical Olympiad 1984, Problem 1
Let $x$, $y$, $z$ be nonnegative real numbers with $x + y + z = 1$.
Show that $0 \leq xy+yz+zx-2xyz \leq \frac{7}{27}$
-/
namespace Imo1984P1
theorem imo1984_p1 (x y z : ℝ)
(h₀ : 0 ≤ x ∧ 0 ≤ y ∧ 0 ≤ z)
(h₁ : x + y + z = 1) :
0 ≤ x * y + y * z + z * x - 2 * x * y * z ∧ x * y + y * z + z * x - 2 * x * y * z ≤
(7:ℝ) / 27 := sorry
end Imo1984P1
This problem has a complete formalized solution.