Compfiles: Catalog Of Math Problems Formalized In Lean

Imo1984P1


import Mathlib.Tactic
import Mathlib.Analysis.SpecialFunctions.Pow.Real

/-!
# International Mathematical Olympiad 1984, Problem 1

Let $x$, $y$, $z$ be nonnegative real numbers with $x + y + z = 1$.
Show that $0 \leq xy+yz+zx-2xyz \leq \frac{7}{27}$
-/

namespace Imo1984P1

theorem imo1984_p1  (x y z : ℝ)
  (h₀ : 0 ≤ x ∧ 0 ≤ y ∧ 0 ≤ z)
  (h₁ : x + y + z = 1) :
    0 ≤ x * y + y * z + z * x - 2 * x * y * z ∧ x * y + y * z + z * x - 2 * x * y * z ≤
      (7:ℝ) / 27 := sorry

end Imo1984P1

File author(s): InternLM-MATH LEAN Formalizer v0.1, Hongyu Ouyang

This problem has a complete formalized solution.

Open with the in-brower editor at live.lean-lang.org:
External resources: