Compfiles: Catalog Of Math Problems Formalized In Lean

Imo1987P6


import Mathlib.Data.Nat.Prime.Basic
import Mathlib.Data.Real.Sqrt
import Mathlib.Tactic.Ring

/-!
# International Mathematical Olympiad 1987, Problem 6

Let $n$ be an integer greater than or equal to 2. Prove that
if $k^2 + k + n$ is prime for all integers $k$ such that
$0 <= k <= \sqrt{n/3}$, then $k^2 + k + n$ is prime for all
integers $k$ such that $0 <= k <= n - 2$.
-/

namespace Imo1987P6
open Nat

theorem imo1987_p6
    (p : ℕ)
    (h₁ : ∀ k : ℕ, k ≤ Nat.floor (Real.sqrt ((p:ℝ) / 3)) → Nat.Prime (k^2 + k + p)) :
    ∀ i ≤ p - 2, Nat.Prime (i^2 + i + p) := sorry

end Imo1987P6

File author(s): Jia-Jun Ma

This problem has a complete formalized solution.

Open with the in-brower editor at live.lean-lang.org:
External resources: