import Mathlib
/-!
# International Mathematical Olympiad 1991, Problem 2
Let n > 6 be an integer and a₁, a₂, ..., aₖ be all the
natural numbers less than n and relatively prime to n.
If
a₂ - a₁ = a₃ - a₂ = ... = aₖ - aₖ₋₁ > 0,
prove that n must either be a prime number of a power
of 2.
-/
namespace Imo1991P2
theorem imo1991_p2 (n : ℕ) (hn : 6 < n)
(k : ℕ) (a : Fin k → ℕ)
(ha1 : { a i | i } = { m | Nat.Coprime m n ∧ m < n })
(d : ℕ) (hd : 0 < d)
(ha2 : ∀ i : Fin k, (h : i + 1 < k) → a i + d = a ⟨i + 1, h⟩) :
n.Prime ∨ n.isPowerOfTwo := sorry
end Imo1991P2
This problem does not yet have a complete formalized solution.