import Mathlib.Analysis.SpecialFunctions.Pow.Real
/-!
# International Mathematical Olympiad 2001, Problem 2
Let a, b, c be positive reals. Prove that
a / √(a² + 8bc) + b / √(b² + 8ca) + c / √(c² + 8ab) ≥ 1.
-/
open Real
namespace Imo2001P2
variable {a b c : ℝ}
theorem imo2001_p2 (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) : 1 ≤
a / sqrt (a ^ 2 + 8 * b * c) + b / sqrt (b ^ 2 + 8 * c * a) +
c / sqrt (c ^ 2 + 8 * a * b) := sorry
end Imo2001P2
This problem has a complete formalized solution.
The solution was imported from mathlib4/Archive/Imo/Imo2001Q2.lean.