import Mathlib.Tactic
/-!
# International Mathematical Olympiad 2002, Problem 5
Determine all functions f : ℝ → ℝ such that
(f(x) + f(z))(f(y) + f(t)) = f(xy - zt) + f(xt + yz)
for all real numbers x,y,z,t.
-/
namespace Imo2002P5
/- determine -/ abbrev SolutionSet : Set (ℝ → ℝ) := sorry
theorem imo2002_p5 (f : ℝ → ℝ) :
f ∈ SolutionSet ↔
∀ x y z t, (f x + f z) * (f y + f t) =
f (x * y - z * t) + f (x * t + y * z) := sorry
end Imo2002P5
This problem has a complete formalized solution.