import Mathlib.Tactic
/-!
# International Mathematical Olympiad 2003, Problem 1
Let A be a 101-element subset of S = {1,2,...10⁶}. Prove that
there exist numbers t₁, t₂, ..., t₁₀₀ in S such that the sets
Aⱼ = {x + tⱼ | x ∈ A}, j = 1,2, ..., 100
are pairwise disjoint.
-/
namespace Imo2003P1
abbrev S : Finset ℕ := Finset.Icc 1 (10^6)
theorem imo2003_p1 (A : Finset ℕ) (hA : A ⊆ S) :
∃ t : Fin 100 → S,
∀ i j, i ≠ j → Disjoint {x + t i | x ∈ A} {x + t j | x ∈ A} := sorry
end Imo2003P1
This problem does not yet have a complete formalized solution.