import Mathlib.Algebra.Order.Positive.Field
import Mathlib.Tactic
/-!
# International Mathematical Olympiad 2008, Problem 4
Determine all functions f from the positive reals to the positive reals
such that
(f(w)² + f(x)²) / (f(y)² + f(z)²) = (w² + x²) / (y² + z²)
for all positive real numbers w,x,y,z satisfying xw = yz.
-/
namespace Imo2008P4
abbrev PosReal : Type := { x : ℝ // 0 < x }
/- determine -/ abbrev solution_set : Set (PosReal → PosReal) := sorry
theorem imo2008_p4 (f : PosReal → PosReal) :
f ∈ solution_set ↔
∀ w x y z, w * x = y * z →
((f w)^2 + (f x)^2) * (y^2 + z^2) = (w^2 + x^2) * (f (y^2) + f (z^2)) := sorry
end Imo2008P4
This problem has a complete formalized solution.
The solution was imported from imo-A-and-N/src/IMO2008/A1/A1.lean.