import Mathlib.Data.Real.Basic
import Mathlib.Tactic.Linarith
/-!
# International Mathematical Olympiad 2011, Problem 3
Let f : ℝ → ℝ be a function that satisfies
f(x + y) ≤ y * f(x) + f(f(x))
for all x and y. Prove that f(x) = 0 for all x ≤ 0.
-/
namespace Imo2011P3
theorem imo2011_p3 (f : ℝ → ℝ) (hf : ∀ x y, f (x + y) ≤ y * f x + f (f x)) :
∀ x ≤ 0, f x = 0 := sorry
end Imo2011P3
This problem has a complete formalized solution.