import Mathlib.Algebra.GeomSum
import Mathlib.Data.Real.Archimedean
import Mathlib.Tactic
/-!
# International Mathematical Olympiad 2013, Problem 5
Let ℚ>₀ be the set of positive rational numbers. Let f: ℚ>₀ → ℝ be a function satisfying
the conditions
(1) f(x) * f(y) ≥ f(x * y)
(2) f(x + y) ≥ f(x) + f(y)
for all x,y ∈ ℚ>₀. Given that f(a) = a for some rational a > 1, prove that f(x) = x for
all x ∈ ℚ>₀.
-/
namespace Imo2013P5
theorem imo2013_p5
(f : ℚ → ℝ)
(H1 : ∀ x y, 0 < x → 0 < y → f (x * y) ≤ f x * f y)
(H2 : ∀ x y, 0 < x → 0 < y → f x + f y ≤ f (x + y))
(H_fixed_point : ∃ a, 1 < a ∧ f a = a) :
∀ x, 0 < x → f x = x := sorry
end Imo2013P5
This problem has a complete formalized solution.