Compfiles: Catalog Of Math Problems Formalized In Lean

Imo2023P4


import Mathlib.Tactic

/-!
# International Mathematical Olympiad 2023, Problem 4

Let x₁, x₂, ... x₂₀₂₃ be distinct positive real numbers.
Define

   aₙ := √((x₁ + x₂ + ... + xₙ)(1/x₁ + 1/x₂ + ... + 1/xₙ)).

Suppose that aₙ is an integer for all n ∈ {1,...,2023}.
Prove that 3034 ≤ a₂₀₂₃.
-/

namespace Imo2023P4

noncomputable def a (x : Finset.Icc 1 2023 → ℝ) (n : Finset.Icc 1 2023) : ℝ :=
  √((∑ i ∈ Finset.univ.filter (· ≤ n), x i) *
    (∑ i ∈ Finset.univ.filter (· ≤ n), (1 / x i)))

theorem imo2023_p4
    (x : Finset.Icc 1 2023 → ℝ)
    (hxp : ∀ i, 0 < x i)
    (hxi : x.Injective)
    (hxa : ∀ i : Finset.Icc 1 2023, ∃ k : ℤ, a x i = k)
    : 3034 ≤ a x ⟨2023, by simp⟩ := sorry

end Imo2023P4

File author(s): David Renshaw

This problem has a complete formalized solution.

Open with the in-brower editor at live.lean-lang.org:
External resources: