import Mathlib.Analysis.MeanInequalities
import Archive.Wiedijk100Theorems.AscendingDescendingSequences
/-!
# International Mathematical Olympiad 2025, Problem 6
Consider a 2025 × 2025 grid of unit squares. Matilda wishes to place
on the grid some rectangular tiles, possibly of different sizes,
such that each side of every tile lies on a grid line and
every unit square is covered by at most one tile.
Determine the minimum number of tiles Matilda needs to place
so that each row and each column of the grid has exactly one unit square
that is not covered by any tile.
-/
namespace Imo2025P6
variable {n : ℕ}
abbrev Point (n : ℕ) := Fin n × Fin n
variable {all_black : Finset (Point n)}
section ProblemSetup
variable [NeZero n]
abbrev px (p : Point n) : ℕ := p.1.val
abbrev py (p : Point n) : ℕ := p.2.val
structure Matilda (n : ℕ) [NeZero n] (all_black : Finset (Point n)) where
x_min : ℕ
x_max : ℕ
y_min : ℕ
y_max : ℕ
h_x_le : x_min ≤ x_max
h_y_le : y_min ≤ y_max
h_x_bound : x_max < n
h_y_bound : y_max < n
h_disjoint : ∀ p ∈ all_black, ¬(x_min ≤ px p ∧ px p ≤ x_max ∧ y_min ≤ py p ∧ py p ≤ y_max)
@[simp]
def Matilda.mem (m : Matilda n all_black) (p : Point n) : Prop :=
m.x_min ≤ px p ∧ px p ≤ m.x_max ∧ m.y_min ≤ py p ∧ py p ≤ m.y_max
def IsValidConfiguration (n : ℕ) [NeZero n]
(all_black : Finset (Point n)) (partition : Finset (Matilda n all_black)) : Prop :=
all_black.card = n ∧
(∀ p ∈ all_black, ∀ q ∈ all_black, px p = px q → p = q) ∧
(∀ p ∈ all_black, ∀ q ∈ all_black, py p = py q → p = q) ∧
(∀ p : Point n, p ∉ all_black → ∃! m ∈ partition, m.mem p)
def IsMinMatildaCount (n : ℕ) [NeZero n] (m : ℕ) : Prop :=
(∀ (all_black : Finset (Point n)) (partition : Finset (Matilda n all_black)),
IsValidConfiguration n all_black partition → m ≤ partition.card) ∧
(∃ (all_black : Finset (Point n)) (partition : Finset (Matilda n all_black)),
IsValidConfiguration n all_black partition ∧ partition.card = m)
end ProblemSetup
/- determine -/ abbrev solution_value : ℕ := sorry
theorem imo2025_p6 : IsMinMatildaCount 2025 solution_value := sorry
end Imo2025P6
This problem has a complete formalized solution.