import Mathlib.Data.Real.Basic
import Mathlib.Data.Real.Sqrt
import Mathlib.Analysis.InnerProductSpace.PiL2
import Mathlib.Analysis.Normed.Lp.PiLp
/-!
# Iranian Mathematical Olympiad 1998, Problem 9
Let x,y,z > 1 and 1/x + 1/y + 1/z = 2. Prove that
√(x + y + z) ≥ √(x - 1) + √(y - 1) + √(z - 1).
-/
namespace Iran1998P9
theorem iran1998_p9
(x y z : ℝ)
(hx : 1 < x)
(hy : 1 < y)
(hz : 1 < z)
(h : 1/x + 1/y + 1/z = 2) :
√(x - 1) + √(y - 1) + √(z - 1) ≤ √(x + y + z) := sorry
end Iran1998P9
This problem has a complete formalized solution.