import Mathlib.Data.Nat.ModEq
import Mathlib.Data.ZMod.Basic
import Mathlib.Tactic
/-!
Polish Mathematical Olympiad 1998, Problem 4
Prove that the sequence {a_n} defined by a_1 = 1 and
a_n = a_{n - 1} + a_{⌊n/2⌋} n = 2,3,4,...
contains infinitely many integers divisible by 7.
-/
namespace Poland1998P4
def a : ℕ → ℕ
| 0 => 1 -- unused dummy value
| 1 => 1
| Nat.succ n =>
have _ : (n.succ / 2) < n.succ := Nat.div_lt_self' n 0
a n + a (n.succ / 2)
theorem poland1998_p4 : Set.Infinite { n | 7 ∣ a n } := sorry
end Poland1998P4
This problem has a complete formalized solution.