import Mathlib.Tactic
/-!
# USA Mathematical Olympiad 1985, Problem 1
Determine whether or not there are any positive integral solutions of
the simultaneous equations
x₁² + x₂² + ⋯ + x₁₉₈₅² = y³
x₁³ + x₂³ + ⋯ + x₁₉₈₅³ = z²
with distinct integers x₁, x₂, ⋯, x₁₉₈₅.
-/
namespace Usa1985P1
/- determine -/ abbrev does_exist : Bool := sorry
abbrev is_valid (x : ℕ → ℤ) (y z : ℤ) : Prop :=
(∀ i ∈ Finset.range 1985, 0 < x i) ∧
0 < y ∧ 0 < z ∧
∑ i ∈ Finset.range 1985, x i ^ 2 = y ^ 3 ∧
∑ i ∈ Finset.range 1985, x i ^ 3 = z ^ 2 ∧
∀ i ∈ Finset.range 1985, ∀ j ∈ Finset.range 1985, i ≠ j → x i ≠ x j
theorem usa1985_p1 :
if does_exist
then ∃ x y z, is_valid x y z
else ¬ ∃ x y z, is_valid x y z := sorry
end Usa1985P1
This problem has a complete formalized solution.