import Mathlib.Data.Real.Basic
import Mathlib.Analysis.SpecialFunctions.Trigonometric.Arctan
import Mathlib.Analysis.MeanInequalities
import Mathlib.Tactic
/-!
# USA Mathematical Olympiad 1998, Problem 3
Let a₀,a₁,...,aₙ be real numbers from the interval (0,π/2) such that
tan(a₀ - π/4) + tan(a₁ - π/4) + ... + tan(aₙ - π/4) ≥ n - 1.
Prove that
tan(a₀)tan(a₁)...tan(aₙ) ≥ nⁿ⁺¹.
-/
namespace Usa1998P3
theorem usa1998_p3
(n : ℕ)
(a : ℕ → ℝ)
(ha : ∀ i ∈ Finset.range (n + 1), a i ∈ Set.Ioo 0 (Real.pi / 2))
(hs : n - 1 ≤ ∑ i ∈ Finset.range (n + 1), Real.tan (a i - (Real.pi / 4)))
: n ^ (n + 1) ≤ ∏ i ∈ Finset.range (n + 1), Real.tan (a i) := sorry
end Usa1998P3
This problem has a complete formalized solution.