Compfiles: Catalog Of Math Problems Formalized In Lean

Usa2003P5


import Mathlib.Tactic
import Mathlib.Analysis.SpecialFunctions.Pow.Real

/-!
# USA Mathematical Olympiad 2003, Problem 5

Prove that for a,b,c > 0:
(2a+b+c)² / (2a²+(b+c)²) + (2b+c+a)² / (2b²+(c+a)²) + (2c+a+b)² / (2c²+(a+b)²) ≤ 8
-/

namespace Usa2003P5

theorem usa2003_p5 {a b c : ℝ} (ha : 0 < a) (hb : 0 < b) (hc : 0 < c) :
    (2*a+b+c)^2/(2*a^2+(b+c)^2) + (2*b+c+a)^2/(2*b^2+(c+a)^2) +
    (2*c+a+b)^2/(2*c^2+(a+b)^2) ≤ 8 := sorry

end Usa2003P5

File author(s): Evan Chen

This problem has a complete formalized solution.

Video:
Open with the in-brower editor at live.lean-lang.org:
External resources: