Compfiles: Catalog Of Math Problems Formalized In Lean

Usa2011P1


import Mathlib.Analysis.SpecialFunctions.Pow.Real
import Mathlib.Analysis.MeanInequalities

/-!
# USA Mathematical Olympiad 2011, Problem 1

Let a, b, c be positive reals such that a² + b² + c² + (a+b+c)² ≤ 4.
Prove that
(ab+1)/(a+b)² + (bc+1)/(b+c)² + (ca+1)/(c+a)² ≥ 3.
-/

open Real

namespace Usa2011P1

variable {a b c : ℝ}

theorem usa2011_p1 (ha : 0 < a) (hb : 0 < b) (hc : 0 < c)
    (h : a ^ 2 + b ^ 2 + c ^ 2 + (a + b + c) ^ 2 ≤ 4) :
    3 ≤ (a * b + 1) / (a + b) ^ 2 + (b * c + 1) / (b + c) ^ 2 + (c * a + 1) / (c + a) ^ 2 := sorry
end Usa2011P1

File author(s): Evan Chen

This problem has a complete formalized solution.

Open with the in-brower editor at live.lean-lang.org:
External resources: