import Mathlib.Analysis.SpecialFunctions.Pow.Real
import Mathlib.Analysis.MeanInequalities
/-!
# USA Mathematical Olympiad 2011, Problem 1
Let a, b, c be positive reals such that a² + b² + c² + (a+b+c)² ≤ 4.
Prove that
(ab+1)/(a+b)² + (bc+1)/(b+c)² + (ca+1)/(c+a)² ≥ 3.
-/
open Real
namespace Usa2011P1
variable {a b c : ℝ}
theorem usa2011_p1 (ha : 0 < a) (hb : 0 < b) (hc : 0 < c)
(h : a ^ 2 + b ^ 2 + c ^ 2 + (a + b + c) ^ 2 ≤ 4) :
3 ≤ (a * b + 1) / (a + b) ^ 2 + (b * c + 1) / (b + c) ^ 2 + (c * a + 1) / (c + a) ^ 2 := sorry
end Usa2011P1
This problem has a complete formalized solution.