import Mathlib.Tactic
/-!
# USA Mathematical Olympiad 2014, Problem 1
Let a, b, c, d be real numbers such that b-d ≥ 5 and all zeros
x₁, x₂, x₃, x₄ of x⁴+ax³+bx²+cx+d are real.
Find the smallest value the product $(x₁²+1)(x₂²+1)(x₃²+1)(x₄²+1)$ can take.
-/
namespace Usa2014P1
open Polynomial
noncomputable def Objective (x : Fin 4 → ℝ) : ℝ := ∏ i, ((x i)^2 + 1)
def Conditions (x : Fin 4 → ℝ) : Prop := ∃ a b c d : ℝ, (5 ≤ b - d) ∧
((X - C (x 0)) * (X - C (x 1)) * (X - C (x 2)) * (X - C (x 3))
= X^4 + C a * X^3 + C b * X^2 + C c * X + C d)
noncomputable /- determine -/ abbrev solution : ℝ := sorry
theorem usa2014_p1 : IsLeast (Objective '' { x | Conditions x }) solution := sorry
end Usa2014P1
This problem has a complete formalized solution.