import Mathlib
import Mathlib.Tactic
/-!
# USA Mathematical Olympiad 2015, Problem 5
Let a, b, c, d, e be distinct positive integers such that a⁴+b⁴ = c⁴+d⁴ = e⁵.
Show that ac+bd is a composite number.
-/
namespace Usa2015P5
variable { a b c d e p : ℕ }
(ha : 0 < a) (hb : 0 < b) (hc : 0 < c) (hd : 0 < d) (he : 0 < e)
(habe : a ^ 4 + b ^ 4 = e ^ 5)
(hcde : c ^ 4 + d ^ 4 = e ^ 5)
(hab : a ≠ b) (hac : a ≠ c) (had : a ≠ d) (hae : a ≠ e)
(hbc : b ≠ c) (hbd : b ≠ d) (hbe : b ≠ e)
(hcd : c ≠ d) (hce : c ≠ e)
(hde : d ≠ e)
include ha hb hc hd he habe hcde had hbc hac in
theorem usa2015_p5 : ¬ Nat.Prime (a * c + b * d) ∧ (1 < a * c + b * d) := sorry
end Usa2015P5
This problem has a complete formalized solution.