Compfiles: Catalog Of Math Problems Formalized In Lean

Usa2018P1


import Mathlib.Tactic
import Mathlib.Analysis.MeanInequalities

/-!
# USA Mathematical Olympiad 2018, Problem 1

Given that a,b,c are positive real numbers such that

  a + b + c = 4 ∛(abc)

prove that 2(ab + bc + ca) + 4min(a²,b²,c²) ≥ a² + b² + c²
-/

namespace Usa2018P1


theorem usa2018_p1 (a b c : ℝ) :
    a > 0 → b > 0 → c > 0 → a + b + c = 4 * (a * b * c) ^ ((1 : ℝ) / 3) →
    2 * (a * b + b * c + c * a) +
     4 * (min (min (a * a) (b * b)) (c * c)) ≥ a^2 + b^2 + c^2 := sorry

This problem has a complete formalized solution written by Hongyu Ouyang.

Open with the in-brower editor at live.lean-lang.org:
External resources: