import Mathlib.Tactic
import Mathlib.Analysis.MeanInequalities
/-!
# USA Mathematical Olympiad 2018, Problem 1
Given that a,b,c are positive real numbers such that
a + b + c = 4 ∛(abc)
prove that 2(ab + bc + ca) + 4min(a²,b²,c²) ≥ a² + b² + c²
-/
namespace Usa2018P1
theorem usa2018_p1 (a b c : ℝ) :
a > 0 → b > 0 → c > 0 → a + b + c = 4 * (a * b * c) ^ ((1 : ℝ) / 3) →
2 * (a * b + b * c + c * a) +
4 * (min (min (a * a) (b * b)) (c * c)) ≥ a^2 + b^2 + c^2 := sorry
end Usa2018P1
This problem has a complete formalized solution.