import Mathlib.Data.Finset.Card
import Mathlib.Data.Fintype.Card
import Mathlib.Data.Fintype.Prod
import Mathlib.Tactic.Positivity
/-!
# USA Mathematical Olympiad 2022, Problem 1
Let a and b be positive integers. The cells of an (a+b+1) × (a+b+1) grid
are colored amber and bronze such that there are at least a² + ab - b
amber cells and at least b² + ab - a bronze cells. Prove that it is
possible to choose a amber cells and b bronze cells such that no two
of the a + b chosen cells lie in the same row or column.
-/
namespace Usa2022P1
theorem usa2022_p1
(a b : ℕ)
(ha : 0 < a)
(hb : 0 < b)
(color : Fin (a + b + 1) × Fin (a + b + 1) → Fin 2)
(c0 : a^2 + a * b - b ≤ Fintype.card {s // color s = 0})
(c1 : b^2 + a * b - a ≤ Fintype.card {s // color s = 1}) :
∃ A B : Finset (Fin (a + b + 1) × Fin (a + b + 1)),
A.card = a ∧ B.card = b ∧
(∀ x ∈ A, color x = 0) ∧
(∀ y ∈ B, color y = 1) ∧
∀ x ∈ A ∪ B, ∀ y ∈ A ∪ B, x ≠ y → x.fst ≠ y.fst ∧ x.snd ≠ y.snd := sorry
end Usa2022P1
This problem does not yet have a complete formalized solution.